Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia.
نویسندگان
چکیده
Different cerebellar regions participate in balance control and voluntary limb coordination, both of which might be important for normal bipedal walking. We wanted to determine the relative contributions of balance versus leg-coordination deficits to cerebellar gait ataxia in humans. We studied 20 subjects with cerebellar damage and 20 control subjects performing three tasks: a lateral weight-shifting task to measure balance, a visually guided stepping task to measure leg- coordination, and walking. We recorded three-dimensional joint position data during all tasks and center of pressure coordinates during weight-shifting. Each cerebellar subject was categorized as having no detectable deficits, a balance deficit only, a leg-placement deficit only, or both deficits. We then determined the walking abnormalities associated with each of these categories. Five of 10 measures of gait ataxia were abnormal in cerebellar subjects with a balance deficit, but only 1 was abnormal in cerebellar subjects with a leg-placement deficit. Furthermore, subjects with a balance deficit performed worse than subjects with a leg-placement deficit on 9 of the 10 gait measures. Finally, performance on the balance task, but not the leg-placement task, explained a significant proportion of the variance in walking speed for the entire cerebellar group. We conclude that balance deficits are more closely related to cerebellar gait ataxia than leg-placement deficits. Our findings are consistent with animal literature, which has suggested that cerebellar control of balance and gait are interrelated, and dissociable from cerebellar control of voluntary, visually guided limb movements.
منابع مشابه
Specific influences of cerebellar dysfunctions on gait.
Cerebellar ataxic gait is characterized by unsteady movements and variable gait patterns. Previous studies have successfully identified pathological changes of balance-related gait parameters. However, it has been difficult to demonstrate deficits of joint coordination and the control of limb dynamics. This has motivated the hypothesis that cerebellar ataxic gait might be affected predominantly...
متن کاملErratum to “Effect of Long-Term Climbing Training on Cerebellar Ataxia: A Case Series”
Background. Efficient therapy for both limb and gait ataxia is required. Climbing, a complex task for the whole motor system involving balance, body stabilization, and the simultaneous coordination of all 4 limbs, may have therapeutic potential. Objective. To investigate whether long-term climbing training improves motor function in patients with cerebellar ataxia. Methods. Four patients suffer...
متن کاملThe influence of focal cerebellar lesions on the control and adaptation of gait.
Cerebellar ataxic gait is influenced greatly by balance disorders, most likely caused by lesions of the medial zone of the cerebellum. The contributions of the intermediate and lateral zone to the control of limb dynamics for gait and the adaptation of locomotor patterns are less well understood. In this study, we analysed locomotion and goal-directed leg movements in 12 patients with chronic f...
متن کاملRapid Onset of Motor Deficits in a Mouse Model of Spinocerebellar Ataxia Type 6 Precedes Late Cerebellar Degeneration.
Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant cerebellar ataxia that has been associated with loss of cerebellar Purkinje cells. Disease onset is typically at midlife, although it can vary widely from late teens to old age in SCA6 patients. Our study focused on an SCA6 knock-in mouse model with a hyper-expanded (84X) CAG repeat expansion that displays midlife-onset motor deficit...
متن کاملRapid Onset of Motor Deficits in a Mouse Model of Spinocerebellar Ataxia Type 6 Precedes Late Cerebellar Degeneration1,2,3
Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant cerebellar ataxia that has been associated with loss of cerebellar Purkinje cells. Disease onset is typically at midlife, although it can vary widely from late teens to old age in SCA6 patients. Our study focused on an SCA6 knock-in mouse model with a hyper-expanded (84X) CAG repeat expansion that displays midlife-onset motor deficit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2003